SCI期刊查詢網(wǎng)提供SCI、AHCI、SSCI、國內核刊等期刊目錄查詢選刊服務,助力上萬名科研人員成功評職晉升!

大類學科: 不限 醫(yī)學 生物 物理 化學 農林科學 數(shù)學 地學天文 地學 環(huán)境科學與生態(tài)學 綜合性期刊 管理科學 社會科學 查看全部熱門領域

中科院分區(qū): 不限 1區(qū) 2區(qū) 3區(qū) 4區(qū)

期刊收錄: 不限 SCI SCIE

Fractals-complex Geometry Patterns And Scaling In Nature And Society

Fractals-complex Geometry Patterns And Scaling In Nature And Society封面

簡稱:FRACTALS

ISSN:0218-348X

ESSN:0218-348X

研究方向:數(shù)學 - 數(shù)學跨學科應用

所屬分區(qū):1區(qū)

出版地:SINGAPORE

出版周期:Quarterly

創(chuàng)刊時間:1993

Fractals-complex Geometry Patterns And Scaling In Nature And Society英文簡介

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

Fractals-complex Geometry Patterns And Scaling In Nature And Society中文簡介

《Fractals-complex Geometry Patterns And Scaling In Nature And Society》是一本由WORLD SCIENTIFIC PUBL CO PTE LTD出版商出版的專業(yè)數(shù)學期刊,該刊創(chuàng)刊于1993年,刊期Quarterly,該刊已被國際權威數(shù)據(jù)庫SCI、SCIE收錄。在中科院最新升級版分區(qū)表中,該刊分區(qū)信息為大類學科:數(shù)學 2區(qū),小類學科:數(shù)學跨學科應用 2區(qū);綜合性期刊 3區(qū);在JCR(Journal Citation Reports)分區(qū)等級為Q1。該刊發(fā)文范圍涵蓋數(shù)學跨學科應用等領域,旨在及時、準確、全面地報道國內外數(shù)學跨學科應用工作者在該領域取得的最新研究成果、工作進展及學術動態(tài)、技術革新等,促進學術交流,鼓勵學術創(chuàng)新。2021年影響因子為4.555,平均審稿速度>12周,或約稿。

中科院分區(qū)最新升級版(當前數(shù)據(jù)版本:2021年12月最新升級版)

大類學科 分區(qū) 小類學科 分區(qū) Top期刊 綜述期刊
數(shù)學 2區(qū) MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學跨學科應用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 2區(qū) 3區(qū)

中科院分區(qū)最新基礎版(當前數(shù)據(jù)版本:2021年12月最新基礎版)

大類學科 分區(qū) 小類學科 分區(qū) Top期刊 綜述期刊
數(shù)學 1區(qū) MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學跨學科應用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 2區(qū) 3區(qū)

中科院JCR分區(qū)歷年趨勢圖

JCR分區(qū)(當前數(shù)據(jù)版本:2021-2022年最新版)

JCR分區(qū)等級 JCR所屬學科 分區(qū) 影響因子
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 4.555
MULTIDISCIPLINARY SCIENCES Q2

期刊指數(shù)

影響因子 h-index Gold OA文章占比 研究類文章占比 OA開放訪問 平均審稿速度
4.555 36 16.97% 100.00% 未開放 >12周,或約稿

IF值(影響因子)趨勢圖