SCI期刊查詢網提供SCI、AHCI、SSCI、國內核刊等期刊目錄查詢選刊服務,助力上萬名科研人員成功評職晉升!

大類學科: 不限 醫(yī)學 生物 物理 化學 農林科學 數(shù)學 地學天文 地學 環(huán)境科學與生態(tài)學 綜合性期刊 管理科學 社會科學 查看全部熱門領域

中科院分區(qū): 不限 1區(qū) 2區(qū) 3區(qū) 4區(qū)

期刊收錄: 不限 SCI SCIE

Finite Fields And Their Applications

Finite Fields And Their Applications封面

簡稱:FINITE FIELDS TH APP

ISSN:1071-5797

ESSN:1071-5797

研究方向:數(shù)學 - 數(shù)學

所屬分區(qū):3區(qū)

出版地:UNITED STATES

出版周期:Quarterly

創(chuàng)刊時間:1995

Finite Fields And Their Applications英文簡介

Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.

For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.

The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.

Finite Fields And Their Applications中文簡介

《Finite Fields And Their Applications》是一本由ACADEMIC PRESS INC ELSEVIER SCIENCE出版商出版的專業(yè)數(shù)學期刊,該刊創(chuàng)刊于1995年,刊期Quarterly,該刊已被國際權威數(shù)據(jù)庫SCI、SCIE收錄。在中科院最新升級版分區(qū)表中,該刊分區(qū)信息為大類學科:數(shù)學 2區(qū),小類學科:數(shù)學 2區(qū);應用數(shù)學 2區(qū);在JCR(Journal Citation Reports)分區(qū)等級為Q1。該刊發(fā)文范圍涵蓋數(shù)學等領域,旨在及時、準確、全面地報道國內外數(shù)學工作者在該領域取得的最新研究成果、工作進展及學術動態(tài)、技術革新等,促進學術交流,鼓勵學術創(chuàng)新。2021年影響因子為1.655,平均審稿速度較慢,6-12周。

中科院分區(qū)最新升級版(當前數(shù)據(jù)版本:2021年12月最新升級版)

大類學科 分區(qū) 小類學科 分區(qū) Top期刊 綜述期刊
數(shù)學 2區(qū) MATHEMATICS 數(shù)學 MATHEMATICS, APPLIED 應用數(shù)學 2區(qū) 2區(qū)

中科院分區(qū)最新基礎版(當前數(shù)據(jù)版本:2021年12月最新基礎版)

大類學科 分區(qū) 小類學科 分區(qū) Top期刊 綜述期刊
數(shù)學 3區(qū) MATHEMATICS 數(shù)學 MATHEMATICS, APPLIED 應用數(shù)學 2區(qū) 3區(qū)

中科院JCR分區(qū)歷年趨勢圖

JCR分區(qū)(當前數(shù)據(jù)版本:2021-2022年最新版)

JCR分區(qū)等級 JCR所屬學科 分區(qū) 影響因子
Q1 MATHEMATICS Q1 1.655
MATHEMATICS, APPLIED Q2

期刊指數(shù)

影響因子 h-index Gold OA文章占比 研究類文章占比 OA開放訪問 平均審稿速度
1.655 37 3.38% 100.00% 未開放 較慢,6-12周

IF值(影響因子)趨勢圖